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We present an asymptotic study of steady two-dimensional radial flow between 
converging plane walls (Jeffery-Hamel flow) when the viscosity ,u and density p vary 
with the angular coordinate 8. Two representative situations are considered, the first 
being a two-layer system (in which ,u and p are uniform except for discontinuities 
a t  an interface 8 = O1), and the other involving a fluid for which ,u and p vary 
continuously with 8. The flow is analysed in the asymptotic limit when a parameter 
c related to the wall pressure gradient is large; this corresponds to converging flow 
a t  large Reynolds number. Solutions are derived for the boundary layers a t  the walls 
and for the shear layer a t  the interface ; the results are shown to agree well with some 
exact (numerical) profiles. 

The solutions obtained are not unique, though for given c they represent the 
‘simplest’ type of profile, and the one that seems most likely to be stable. We 
demonstrate the non-uniqueness by deriving in $3  an alternative solution for the 
interfacial shear layer. This solution, however, can exist for only restricted ranges 
of values of the density and viscosity ratios, and involves an outgoing jet, suggesting 
that i t  is likely to be unstable. 

1. Introduction 
Flow systems involving fluids that are stratified in viscosity and density occur 

commonly, in industrial contexts, for example. Unfortunately such flows tend to be 
very complex, and detailed descriptions are rare. One of the more tractable problems 
in this general class was discussed recently by Hooper, Duffy & Moffatt (1982, to be 
referred to as I), who considered two-dimensional viscous stratified flow between 
plane converging or diverging walls - a generalization of the conventional Jeffery- 
Hamel flow (Rosenhead 1940; Fraenkel 1962). This problem is of relevance to the 
study of extrusion processes, though in I it developed from a study of stratified flow 
in ducts of slowly varying cross-section. 

It was shown in I that  Jeffery-Hamel ( JH)  flow can provide an exact solution of 
the Navier-Stokes equations even when the density p and viscosity ,u of the fluid vary 
with the angular coordinate 8. The J H  similarity assumption reduces thc 
Navier-Stokes equations to a second-order nonlinear ordinary differential equation 
whose coefficients depend upon p(8) and p(8 ) .  In  particular, ,u and p may vary 
discontinuously with 8; that is, steady radial flow is possible even for a ‘layered ’ fluid 
(with ,u and p differing from one layer to another) provided that the interface between 
any two layers coincides with a coordinate surface 8 = constant. At such an interface, 
the velocity and shear stress are continuous, as also is the normal stress, since the 
interface remains plane, and interfacial tension plays no part. 
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I n  I, two configurations were analysed in some detail, namely the single-fluid case, 
and a two-layer case with a jump in viscosity across 8 = 0, the density being uniform. 
I n  this paper we consider converging flow, at high Reynolds number, when there is 
variation of both ,LL and p. Boundary-layer solutions for various situations are 
presented, these solutions being in the form of asymptotic expansions in a large 
parameter c related to the pressure gradient at the wall. 

First, in $2, a two-layer flow is considered in which both the viscosity ratio A and 
the density ratio a2 of the two phases are arbitrary. The form of the boundary layer 
near each wall and of the shear layer a t  the interface is derived, and these asymptotic 
results are compared with some exact profiles obtained numerically. The type of 
solution given in $2 is by no means unique, and in $ 3  an alternative profile for the 
region near the interface is obtaiiied. However, this second type of solution (which, 
for given u, can exist for only a restricted range of values ofh),  involves an outgoing 
jet, and is likely to be unstable. 

For completeness, we obtain in $4 the boundary-layer expansion for the case when 
p and p vary continuously with 8; if p is not constant, then the outer (inviscid) flow 
is rotational. The analysis here requires an assumption that buoyancy effects are 
negligible, with variation of density important only insofar as the advective 
acceleration of particles is concerned (so that, in particular, p may be constant). 

2. General formulation, and two-layer flow 
We consider plane radial flow of incompressible viscous fluid between converging 

walls, referring the description to a cylindrical polar coordinate system ( r ,  8, z ) ,  with 
the bounding walls a t  8 = f a :  (see figure la ) .  We allow the viscosity p and density 
p of the fluid to  vary with 8, and define 

so that 
(2.1 b )  

the functionf(8) satisfies (see I) 

and the pressure is P2 P =p,+ , (4kj -c ) ,  
Pr 

where c is a constant related to the wall pressure gradient. The no-slip boundary 
condition a t  the walls 8 = f a :  means that 

and the Reynolds number based on the overall flux is 

R = f ( 8 ) d e .  
J -a 
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FIGURE 1. Jeffery-Hamel flow with angular variation of density and viscosity: 
(a )  continuous variation; ( b )  the two-layer flow studied in JJ2-3. 

We consider first a two-layer flow (figure 1 b)  in which ,u and p are uniform in each 
phase but are discontinuous across 8 = B,, with 

Writing 

(2.3) becomes l;l(f:+4f1)+2P1f,2 = c = ,&(fl+4f2)+2p”zf,2, (2.9) 

lf]’ = 0, @f’]+= 0 on 8 = 8,. (2.10) 

and continuity of velocity and shear stress across the interface requires that 

Continuity of normal stress a t  8 = 8, is achieved by taking c to be the same for the 
two fluids. We shall take the interface to  be horizontal; gravity can then be accounted 
for simply by modifying the pressure (and of course, with the heavier fluid below the 
lighter, gravity will tend to  stabilize the flow). 

The constant c in (2.9) will be taken to be large; for the simplest type of velocity 
profile (see I),  a large value of c corresponds to converging flow with boundary layers 
a t  the walls, R being large and negative. These boundary layers have the asymptotic 
structure? 

where 
(2.11) 

t In this two-layer problem, one could obtain an exact solution in terms of elliptic functions, 
and then from this derive the asymptotic results (2.11) and (2 .25)  using standard formulae. 
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The constants a,, here are introduced simply in order to avoid carrying multiplicative 
factors in the 4,; also the symbols cf,,ii,@,q, * )  are intended to represent 
(fl, ,iil, pl, ql,  - ) or ( f,, F,, b,, q,, + ), as appropriate. Outside the boundary layers, the 
derivative terms in (2.9) may be neglected, so that in each fluid 

which we may write as 
f - Z bzn(,i i , i j)  KzPzn> 

n > o  

where the b,, are known constants. However, for 7 + 00 (2.11) becomes 

(2.12 a )  

(2.12b) 

f N C azn(,ii> 6) K’-2n&n(00), (2.13) 

and, comparing this with (2.12), we see that we may impose the following boundary 
conditions on the F,, a t  7 = 00 : 

n>O 

(2.14) 

However, in practice it is usually sufficient (and simpler) to impose instead 

(2.15) 

Substitution of (2.1 1) into (2.9) leads to the following set of equations for the F,,  : 

(2.16) 

(2.17) 

‘i F,,(co) = -1, a,, = -b,, (bzn + O), 

&,(a) = 0, a,, arbitrary but non-zero (b,, = 0). 

F,’,(~o) = 0. Clearly 
a, = p + ,  a, = jip-1, a4 = z,u 1 “,“-a p 2.  

F: = 2( 1 - F:), 

9 ( F , , )  = F&+4F0F,, = G,,(F,,F,, ..., Gn-,) (n > 0);  

these are to be integrated subject to the boundary conditions 

F,,(O) = 0, F;,(CO) = 0. (2.18) 

Recognizing that Fi(q) is a complementary function for (2.17), one can easily 
construct the solution 

Gn(7) = ~ ~ ( ~ ) [ { [ ~ ~ I - z ~  m ~ 2 n ~ ; d S j d ~  (n > 01, (2.19) 

and then with 

the first few F,, are found to bet (cf. $5  of I) 

G, =-4Fo, G4 = 4-4(1+&)’, (2.20) 

F,(q)  = 2-3tanh’ (q+p), (2.21) 

F,(q) = 3($)1tanh(q+p)sech2(q+p)-1, (2.22) 

&(q) = b sech2 (7 + p) [ 18 tanh2 (q + p) - (87 + 3 d 6 )  tanh (q  + p) + 21 - 1, (2.23) 

where p = artanh ( f ) i  z 1.146. 
Away from the walls, (2.12) gives, in the two fluids, 

f,(e) - - / p K Z - -  p;’,ii1, f,(O) - -p”,BK2-&’,ii,. (2.24) 

t A boundary layer with an outgoing wall jet is also possible (see e.g. Rosenhead 1963, p. 236); 
here we conrentrate on the simpler profile, involving only inflow. Note that the notation for the 
E’s differs slightly from that in I .  



Converging flow of non-uniform fluid 113 

Clearly there must be a shear layer near the interface 8 = 8, where viscous effects 
are important in the transition between the two 'outer' flows (2.24). This shear layer 
will have the asymptotic structure 

p"?K2f10(71) +p"F1,4f12(71) +O(K-2) ,  71 = P!,@K(0-4)  (8 > @ I ) ,  

f(8) = (2.25) 

Substituting into (2.9) and (2.10) we have a t  leading order in K 

' (Pz4K%~(72)+~;1~2f22(72)+O(X-2) ,  72 = fig,Z4K(8-81) (8 < 8,) 

fk = 2(1-ft0) (i = 1,2) ,  (2.26) 

with boundary conditions 

flO(0) = flf20(0), A%O(O) = 4 f ; o ( o ) ,  f&a =fro( - 00) = 0, (2.27) 

.=@, A = @ .  (2.28) 

Without loss of generality we may restrict a by 0 < a < 1, while allowing A to have 
any positive value (the case a = 1 was treated in I). Then the appropriate solutions 
to (2.26), (2.27) aret  

- 1  where 

P2 

fio(T1) = 2-3tanh2 (71 +pi), fm(72) = 2-3  Coth2 ( 7 2 + / 9 2 ) ,  ( 2 . 2 9 ~ ,  b) 

with the boundary conditions a t  I3 = 8, requiring that 

2 - 3 tanh2 p1 = a(2  - 3 coth2 p2),  

At tanhp, sech2p1 = -aicothp2cosech2P2. 

(2.30 a) 

(2.30 b )  

Now, for fzo to remain finite in 7z < 0, p2 must be negative, and so from (2.30b) pi 
must be positive; then ( 2 . 3 0 ~ )  shows that in fact p1 > p.$ Thus we may write 

and p1 and pZ are given uniquely in terms of the parameter b which, from (2.30b), 
must satisfy 

(1  -ha2)  b3-3(1 - A )  b-  ( 2 / ~ )  (A-a) = 0, (2.32) 

a cubic equation that has a unique real root in the range 1 < b < a-l. Clearly if 
ha2 = 1 (so that  pl p1 = ,u2 p2)  then 

2 ( l + a + a 2 ) .  
b =  

3a(1 +a) ' 

t It might have been expected thatf,, andf,, would both be of the form (2.29a), involving tanh 
rather than coth. However the boundary conditions at 8 = 8, could then be satisfied only for 
restricted ranges of values of u and h (see $3);  in particular, there could be no solution with h = 1 
(unless also u = 1, in which case PI = -pz = rn andf,, =f20 = - 1). Note that, if we had chosen 
to make u > 1, then tanh and coth in (2.29) would be interchanged. 

$ This means, incidentally, that flo < 0 in ql > 0; and, since also fzo < 0 in q z  < 0, the flow is 
purely inward, with no outgoing 'interior jet '  (cf. $3) .  
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FIGURE 2 (a ,  b, c).  For caption see facing page. 
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FIGURE 2. Comparison of some exact solutions with the two-term asymptotic results (2.11) (for the 
boundary layers at 0 = fa) and ( 2 . 2 5 )  (for the shear layer at 0 = 0,). The curves are drawn for 
the case c = 300 ( K  % 3.5), a = 4. and 8, = 0, with (a )  h = 1,r2 = 1 ; ( b )  h = 1, & = 0.2; ( c )  h = 0.1, 
u2 = 0 2 ;  (d )  h = 0 1 ,  r2 = 1 ; ( e )  h = 1.35 x lo-*, r2 = 1.25 x 

if h = u (so that ,u!p;i = pip;$, and the boundary layers in the two fluids are of the 
same thickness) then 

h = [  3 7 .  
l+a+u2 ’ 

and if h = 1 (pl = ,uz) then 
- r 2 $  

Also, if u + 1 ,  then b + 1 and the solution (6.4) of I is recovered. 

A t  next order we have 

with boundary conditions 



(2.34) 

(2.35) I where d A , ( b  + 1) /\#A,( 1 + 0-b) 
b-1 ’ A ,  = , A,= 1 -0-b 

A, = 0 (h-0-2) [(rh(2+C-b)qb+l)+(aA)q2+b)4(1+ab)]- l  (2’)t 
(so that, should the fluids have the same kinematical viscosity p/p,  then A, = A, = 0 
and the 0(1) terms in (2.25) would have simplyf,, = - 1 ; however, higher-order terms 
would not be constants). To this order of approximation the relation (2.6) becomes 

R - - aK2(fi$+p”,$) + 3K@:ji;f[2 - (I)$- tanhP1] +ji!p”;z [2 - (&$+ cothP,]} 

(2.36) 

Figure 2 compares the above asymptotic results (drawn as dashed lines) with the 
corresponding exact computed profiles (drawn as full lines), for the case a = fn, 
OI = 0 and c = 300 ( K  x 3.5). Figure 2 (a) shows the uniform-fluid case c? = h = 1, 
together with the asymptotic expansion (2.11) for the boundary layer on 8 = a. 
Figures 2 (b-e) show the modifica.tions to the profile when u2 and h are changed, figure 
2(e) corresponding to an air-water system ( A  = 1.35 x low2, a2 x 1.25 x lop3, with 
both fluids regarded as incompressible). The values of the Reynolds number predicted 
by (2.36) for these cases are respectively R = - 16.61, - 19.32, -20.99, - 16.95, 
- 15003, agreeing with the computed values to within 2 %  at worst. 

As one simple application of the results, we can consider briefly the situation 
sketched in figure 14(a) of I - a two-layer flow through a converging duct into a 
parallel-sided channel. If the interface is at 8 = 0 in the converging section, then for 
sufficiently large c the fluxes Q, and Q, of the two fluids are approximately 

1 P  
{ Q l ,  Q21 = - W t C ) Z  Ap”,4 fi,”, 

P 

so that q = Ql/Q, = u-l. Downstream in the straight section the depths of the two 
layers are in the ratio (1 - H ) / H ,  where H is the solution of (12.16) with q = cr-l. 
For example, if p1 = p, ( A  = l), then 

On the other hand, for an air-water system H x 0.41. 

3. Solutions involving interior jets 

a solution 
The leading-order equation (2.26), as well as having the solution (2.29), also has 

(3.1) 

2-33anh2p1 = a(2-3tanh2P,), httanhplsech2/3, = uitanhp,sech2pz. (3.2) 

f 1 0 ( r l )  = 2 - 3 tanh2 (ql +PIL fi0(q2) = 2 - 3 tanh2 (7, +Pz) ,  
provided that there exist real constants P1 and P, such that 
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FIGURE 3. Sketch of possible jet-like profiles near the interface 8 = B,, as given by (3.1). Fluid 1 
is in 8 > 4, and fluid 2 in 8 < 8,. A positive value off corresponds to outyow; away from the 
interface the flow is inward, with f tending to the values -&2K2 and - & 2 l P .  The interface is 
moving inwards in ( a )  and (f), outwards in (c) and (d ) ,  and is stationary in ( b )  and ( e ) .  The 
characteristics of the six profiles here are summarized in table 1. 

Defining y1 = a r t a n h ( 7 )  2+ab 4 > 0, yz = a r t a n h ( T ) '  2+b > 0, 

with -2 < b < 1, 
the possible solutions of (3.2) are 

(i) 
(ii) PI = -Y1, P 2  = = -y2> yz' I PI = Y1, 

(3.3) 

(3.4) 

(3.5) 

provided tha t  b is a real root of the cubic equation (2.32) satisfying (3.4). Such a root 
exists if and only if 

a(2  + a)  
1 + 2 a  h < A(a), A(c) ~ (a < I ) ,  (3.6) 

and, when this condition holds, (2.32) in fact has two relevant roots b,  one of which 
is negative, and the other either positive, zero or negative according as h < a,  h = u 
or h > u ;  if h = A(a),  these two roots coincide, at b = - ( 1  +a)-l. In the range 
0 < a < 1 ,  the function A(a) increases monotonically from 0 to  1 ,  and satisfies 
u < A(a) < at. 

So, (3.1) can be the leading-order solution only if (3.6) is true; and then, for given 
a < 1 and h < A, (3.1) actually represents several different profiles, since in general 
there are two possible values of b,  for each of which there are two possibilities (3.5). 
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Maximum Correspond- 
Sign of of ing diagram 

P 1  and P 2  Zeros of velocity velocity in figure 3 

TABLE 1. Characteristics of the profiles (3.1); the qualitative appearance of the profiles depends 
on the sign of b(h, a) (the solution of (2.32) satisfying (3.4)) and on the choice of sign of /3, and Pz. 

I n  each case the velocity profile involves a single outgoing ‘interior jet ’, the solution 
(3.1) having two zeros between whichj, is positive (with a maximum valuef, = 2 ) .  
When b > 0, the jet is wholly within one or other of the fluids, but when b < 0 i t  
straddles the interface (which therefore moves with a positive, outward velocity) ; 
when b = 0 ( A  = a) the interface is stationary. Figure 3 shows sketches of these 
various possibilities, and some details are summarized in table 1. 

The asymptotic expansion may be continued as in (2.25). At O(Ko)  thejiz,  again 
satisfying (2.33), are 

(3.7) I f l Z ( l ; l l )  = B1tanh(l;l,+P,)sech2 (%+Pl) - l>  

f Z Z ( l r l 2 )  = Bz tanh (72 + PZ) sech2 ( 7 2  + Pz) - 1 2  

where 
a%B,(b + 1 )  hBB,( 1 + a b )  

1-nb b-1  ’ B,  = , B z = -  I 
with 

B, = f Ey ( A  - a’) [ha( 1 + b) (2 + ab)8- (ha)% (1  + a b )  ( 2  + b ) t ] - l ;  

here the f sign corresponds to choices (i) and (ii) respectively in (3.5). 
Perhaps it should be said that the shear-layer solutions obtained earlier ( $ 2 )  seem 

more ‘fundamental’ than those considered here, in that  the earlier ones can (in 
principle) occur for any values of h and a, and also are simpler, having no stationary 
points and no positive jets. We may also mention that there can be no shear-layer 
solution of the form 

since this would require that P1 > 0 and P2 < 0 (for the velocity to be finite 
everywhere), whereas the boundary condition (2.27 b)  would require P1 and Pz to have 
the same sign. 

4. Continuous stratification 
In  the two-layer problems considered above, the outer solution (2.12) is a constant 

in each fluid, and so the corresponding velocity (2.2) represents a potential flow - 
vorticity is generated only at the (plane) boundaries and interface, and is then 
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confined to regions near these special planes. If, however, the density varies 
continuously with 8 (and dP/d8  is non-zero) then constant-pressure surfaces do not 
coincide with constant-density surfaces, and vorticity is generated throughout the 
inviscid stream. Therefore a t  leading order the outer flow - the solution of the inviscid 
JH  problem - is rotational, with 

f(8) - -KZIp"(B)]-?, K = (+c)i + 1 .  (4.1) 

This form for f does not satisfy the no-slip condition on 8 = & a ,  and there must again 
be boundary layers a t  the walls. We may analyse these boundary layers by first 
changing to new variables 4 and 7,  which we define by posing 

f(8, = K r n W ) 4 ( 7 ) ,  4 = KnH(8), (4.2) 

where H(6)  is to be an O( 1 )  function of 8 satisfying H( - a )  = 0 (for a boundary layer 
on 8 = -a) ,  and the exponents m and n are constants. On substitution of (4.2) into 
(2.3) i t  becomes clear that  appropriate choices are m = 2, n = 1 and 

then the JH  equation (2.3) becomes, with no approximation (but provided c > 0), 

(4.4) 4"-2(1-4') = - K-lL 1 4'- K-,L, 4, 

We may now seek a regular expansion 

$(7> K )  = $0(9) + K-l$1(7) + . . .> (4.6) 

4; = 2(1 -$:I> (4.7) 

z ( $ n )  $: +WO $ n  = r n ( 7 )  (n 3 1 )  (4.8) 

= 0, (4.9) 

which when substituted into (4.4) leads to  the equations 

4 

(cf. (2.16) and (2.17)). By the no-slip condition on 8 = -a, the $n must satisfy 

and, continuing the outer expansion (4.1) in the form 

f - -K2P-' 2 - f L,  6 -4, $ - - 1 -+K-'L,, (4.10) 

we see that the appropriate conditions a t  large 7 are 

$@-+-l,  $1+0, $, - - iL ,  as q-+ co. (4.11) 

The function do(7) is clearly identical with the &(7) in (2.21), so that a t  leading order 

f(8) - K z ~ ( 0 ) ] - ~ [ 2 - 3 t a n h 2 ( ~ + ~ ) ~ ,  7 = KH(8).  (4.12) 

Figure 4 is a sketch of the sort of profile predicted by this solution. For higher orders, 
the solution of (4.8), (4.9), (4.11) may be written down as in (2.19). At O ( K )  we have 
rl = - L,  FA, which suggests that i t  would be convenient to replace (4.6) by 

$m>m = $ ~ ( ~ ) + ~ - l L ~ $ 1 ( 7 ) + . . . ;  (4.13) 

(4.14) then satisfies 
9(41) = -8, $l(O) = 0, $,(a) = 0, 
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e = -ff 

FIGURE 4. Sketch of a velocity profile a t  large c when there is continuous variation of density (and 
viscosity). Away from the walls, the profile is the inviscid rotational solution (4.1), and near each 
wall there is a boundary layer of the form (4.12). 

so that 

y#l = 3 + 2 tanh (7 + p) - 5 tanh2 (7 + p) - +e-2(a + p )  

- (57 + 12 - 3 4 6 )  tanh (7 +p) sech2 (7 +p). (4.15) 

Terms at higher order can similarly be found. 
If, exceptionally, j 2 / b 3  is constant (with 1; = pop$, say) then L, = 0, = 0, and 

(4.16) r2 = -L2(e)  G ( ~ ) ,  L, = -~ ;PO(P" - S P ) .  

I n  that case the second non-zero term in (4.13) is O(K-2) :  

4 $ 0 ( 7 )  +W2J52(0) 4(7L (4.17) 

where 6 is as in (2.22). An even more exceptional case arises if 1; and p vary with 
0 in such a way that 

L,(e) = 0, L,(e) = 0; (4.18) 

then the exact JH equation (4.4) becomes 

$" = 2(1 -$2), (4.19) 

and the expansion (4.6) for large K terminates with q50 (i.e. (4.12) is valid at all orders, 
corrections to it being o ( K N )  for any N ) .  However, the functions 1;(/3) and p(0 )  that  
satisfy (4.18) are rather special: 

p(e)  = cash 242(e-e0) ,  ~ ( 8 )  = pO@(0)]% (4.20) 

Here po, po and Oo are constants, only one of which is independent, since the 
normalization conditions (2.1 b)  require that 

2 4 2  a 
- sinh 2 4 2  a ' 

pocosh22/20 - 2a = p o p $ r a  [cosh22/2(0-0,)]~d/3. (4.21) 



Converging Jow of non-uniform j luid 121 

This work was supported by the Science Research Council under grant no. 
GRlAl5993.4. The author is very grateful to H. K.  Moffatt and Alison Hooper for 
many useful discussions. 

R E F E R E N C E S  

FRAENKEL, L. E. 1962 Laminar flow in symmetrical channels with slightly curved walls. I. On 

HOOPER, A. P., DUFFY, B. R. & MOFFATT, H. K. 1982 Flow of fluid of non-uniform viscosity in 

ROSENHEAD, L. 1940 The steady two-dimensional radial flow of viscous fluid between two inclined 

ROSENHEAD, L. (ed.) 1963 Laminar Boundary Layers (Oxford University Press). 

the Jeffery-Hamel solutions for flow between plane walls. Proc. R. Soc. Lond. A267, 119. 

converging and diverging channels. J .  Fluid Mech. 117, 283. 

walls. Proc. R. SOC. Lond. A175, 436. 


